
Arduino with RN-XV WiFly Module

Xiaoyang Zhong

11/20/2015

This tutorial describes how to connect a RN-XV WiFly module with Arduino directly, without the

support of the XBee Shield.

0. Download and Install Related Libraries

Download the WiFlySerial, PString, Time, and Streaming libraries through

Oncourse/Resources/Projects/Project 3/Arduino_wifi_libraries.zip.

Unzip the above files, and copy all the files to [arduino-ide]/libraries/. Restart Arduino IDE, you

would be able to use the libraries.

Download the Arduino_wifi_examples.zip from Oncourse/Resources/Projects/Project 3/, put

the examples to your working folder.

1. Connections

Connect the RN-XV to Arduino through wires.

Arduino RN-XV WiFly

Pin 2 Pin 2 (TX)

Pin 3 Pin 3 (RX)

3.3 V (voltage out) Pin 1 (3.3 V voltage in)

GND Pin 10 (GND)

NOTE: Arduino Pin 3 must NOT connect to RN-XV directly, because the output voltage does not

match. Arduino Pin 3 output voltage is 5.0 V, whereas the RN-XV module can only tolerant 3.3 V.

Thus, a simple voltage divider is implemented to the output of Arduino Pin 3, which is shown

below.

The real picture is shown below. The schema is also provided below. (Pay attention to the

correct pins)

Fig. 1. RN-XV wire connection

Fig. 2. Arduino and RN-XV module connection schema.

The output of Arduino Pin 3 is divided using three 1-k resistors, then to RN-XV ping 3.

Fig. 3. Arduino and RN-XV connection

2. Run Initialization Application

The RN-VX WiFly module needs some initial setup for the first time use. When the wires are

correctly connected, the RED and GREEN leds on the RN-XV module would blink very fast.

Open the test_wifi_init example; modify lines 36 and 37 to include your wifi network ssid and

password.

Fig. 4. WiFi parameters

Then upload the example to Arduino, you would see similar output from the Serial Monitor as

the following figure. In the meantime, the RED led would go off, and GREEN led would blink

slower, indicating the WiFi connection is established. Then GREEN led would blink fast in

sometime, because it is transmitting data to Arduino. When the transmission is done, it would

blink slower again. Yellow led would blink occasionally, indicating WiFly is transmitting data to

the router.

Fig. 5. test_wifi_init example output.

When you see this, the WiFly module is correctly initialized. You are ready to go to the next step.

3. HTTP Example

This example shows how to setup a simple HTTP server on Arduino. This example is also

included in the WiFlySerial library.

Open the WebTime example. This example shows how to read the time on Arduino (start from

1970 00:00:00) and send an HTTP response when you access Arduino from browser.

Modify lines 37 and 38 to included your WiFi ssid and password. Then upload the example to

Arduino.

When you see the following output, your Arduino is ready to accept HTTP request.

Fig. 6. WebTime example output.

Open your browser (if Chrome does not work, use IE or Firefox), and type in the IP address and

port number of Arduino:

http://192.168.1.11:2000/

You would see the following information in Serial Monitor.

Fig. 7. WebTime example, Arduino received HTTP GET.

In the meantime, you would see the following information from your browser:

Fig. 8. WebTime example, time on browser.

If you have sensors attached, and want to post the sensor readings to the HTTP response, you

would modify the function MakeReponseBody() to include your sensor readings.

4. UDP Example

This example shows how to send a packet using UDP protocol.

Open the UDPSample example. This example is based on WebTime, instead of using HTTP, it

now uses UDP to periodically send the local time to any UDP listener.

In the meantime, run the UDPClient.java (inside the UDPSample example) using

Eclipse/terminal/other java IDE.

Modify lines 67, 68 and 69 to include your WiFi ssid, password, and the IP address of your laptop,

which would run a UDP listener. You can also change the HOST_PORT is you want.

Fig. 9. UDPSample example configuration

Upload the example to Arduino, you would see the following output when the code is

successfully running.

Fig. 10. UDPSample example, Arduino is now running as a UDP sender.

You can see that Arduino has sent several UDP packets in a row. Now check these packets in the

UDPClient. The following shows the output of Eclipse:

Fig. 11. UDPSample example, message received in the UDPClient.

Reference:

http://cairohackerspace.blogspot.com/2011/05/beginners-guide-to-connecting-and.html

https://roboticsgiesing.wordpress.com/2012/08/01/roving-rn-xv-wlan-shield-connected-to-

arduino/

https://www.sparkfun.com/products/10822

http://www.java2s.com/Code/Java/Network-Protocol/ReceiveUDPpockets.htm

http://cairohackerspace.blogspot.com/2011/05/beginners-guide-to-connecting-and.html
https://roboticsgiesing.wordpress.com/2012/08/01/roving-rn-xv-wlan-shield-connected-to-arduino/
https://roboticsgiesing.wordpress.com/2012/08/01/roving-rn-xv-wlan-shield-connected-to-arduino/
https://www.sparkfun.com/products/10822
http://www.java2s.com/Code/Java/Network-Protocol/ReceiveUDPpockets.htm

